What is the packing efficiency of simple cubic structure if atoms are touching along the edge?
📋 Given:
• Simple cubic structure
• Edge length a = 2r (where r is atomic radius)
🎯 Find: Packing efficiency (%)
Step 1: Volume of atoms in unit cell
Vatoms = 1 × (4/3)πr³
Step 2: Volume of unit cell
Vcell = a³ = (2r)³ = 8r³
Step 3: Packing efficiency
η = [(4/3)πr³ / 8r³] × 100% = π/6 × 100%
Packing Efficiency = 52.4%
5
🕳️ VoidsEasy
Calculate the number of tetrahedral and octahedral voids in an FCC unit cell.
📋 Given:
• FCC structure with 4 atoms per unit cell
🎯 Find: Number of tetrahedral and octahedral voids
Step 1: Tetrahedral voids
Number of tetrahedral voids = 2N = 2 × 4 = 8
Step 2: Octahedral voids
Number of octahedral voids = N = 4
Step 3: Total voids
Total voids = 8 + 4 = 12
Tetrahedral = 8, Octahedral = 4
6
⚖️ Density CalculationMedium
Copper crystallizes in FCC structure with edge length 3.61 Å. Calculate the density of copper.
📋 Given:
• FCC structure (Z = 4)
• Edge length a = 3.61 Å = 3.61 × 10⁻⁸ cm
• Atomic mass of Cu = 63.5 g/mol
• NA = 6.022 × 10²³ mol⁻¹
🎯 Find: Density of spinel (g/cm³)
Step 1: Calculate unit cell volume
V = a³ = (8.08 × 10⁻⁸)³ = 5.27 × 10⁻²² cm³
Step 2: Apply density formula for complex structure
ρ = (Z × M) / (NA × V)
Step 3: Substitute values
ρ = (8 × 142.3) / (6.022 × 10²³ × 5.27 × 10⁻²²)
Step 4: Calculate numerator and denominator
Numerator = 1138.4 g/mol
Denominator = 3.17 × 10² cm³/mol
Step 5: Final calculation
ρ = 1138.4 / 317 = 3.59 g/cm³
Density of spinel = 3.59 g/cm³
24
🌊 Neutron DiffractionExpert
Calculate the de Broglie wavelength of thermal neutrons at 25°C and determine if they are suitable for crystal diffraction studies.
📋 Given:
• Temperature T = 25°C = 298 K
• Neutron mass mn = 1.675 × 10⁻²⁷ kg
• Boltzmann constant k = 1.38 × 10⁻²³ J/K
• Planck's constant h = 6.626 × 10⁻³⁴ J·s
• Typical d-spacing in crystals ~ 1-5 Å
🎯 Find: de Broglie wavelength and suitability assessment
Step 1: Calculate thermal energy
Ethermal = (3/2)kT = 1.5 × 1.38 × 10⁻²³ × 298
Step 2: Calculate thermal energy
Ethermal = 6.17 × 10⁻²¹ J
Step 3: Calculate neutron velocity
E = (1/2)mv², so v = √(2E/m)
v = √(2 × 6.17 × 10⁻²¹ / 1.675 × 10⁻²⁷) = 2.71 × 10³ m/s
λ = h/p = 6.626 × 10⁻³⁴ / 4.54 × 10⁻²⁴ = 1.46 × 10⁻¹⁰ m = 1.46 Å
Step 6: Assessment
λ ≈ 1.46 Å is comparable to crystal d-spacings (1-5 Å)
λ = 1.46 Å - Excellent for diffraction studies!
25
🧮 Advanced CrystallographyExpert
A complex oxide Ln₂Ti₂O₇ (pyrochlore structure) has a cubic unit cell with 8 formula units. Given that the oxide ion radius is 1.40 Å and it adopts the ideal pyrochlore geometry, calculate the expected lattice parameter and predict the lanthanide ionic radius required for this structure.
📋 Given:
• Pyrochlore structure Ln₂Ti₂O₇ (Z = 8)
• Oxide ion radius rO²⁻ = 1.40 Å
• Ti⁴⁺ ionic radius = 0.605 Å
• Ideal pyrochlore geometry requirements
• Coordination: Ln³⁺ (8-fold), Ti⁴⁺ (6-fold)
🎯 Find: Expected lattice parameter and required Ln³⁺ radius